Bernoulli numbers and generalized factorial sums
نویسنده
چکیده
We prove a pair of identities expressing Bernoulli numbers and Bernoulli numbers of the second kind as sums of generalized falling factorials. These are derived from an expression for the Mahler coefficients of degenerate Bernoulli numbers. As corollaries several unusual identities and congruences are derived.
منابع مشابه
Secant and Cosecant Sums and Bernoulli-nörlund Polynomials
We give explicit formulae for sums of even powers of secant and cosecant values in terms of Bernoulli numbers and central factorial numbers.
متن کاملSome Identities of the Generalized Twisted Bernoulli Numbers and Polynomials of Higher Order
The purpose of this paper is to derive some identities of the higher order generalized twisted Bernoulli numbers and polynomials attached to χ from the properties of the p-adic invariant integral. We give some interesting identities for the power sums and the generalized twisted Bernoulli numbers and polynomials of higher order using the symmetric properties of the p-adic invariant integral. 20...
متن کاملFaulhaber’s Theorem for Arithmetic Progressions
Abstract. We show that the classical Faulhaber’s theorem on sums of odd powers also holds for an arbitrary arithmetic progression, namely, the odd power sums of any arithmetic progression a + b, a + 2b, . . . , a + nb is a polynomial in na+ n(n+ 1)b/2. The coefficients of these polynomials are given in terms of the Bernoulli polynomials. Following Knuth’s approach by using the central factorial...
متن کاملFaulhaber's theorem on power sums
We observe that the classical Faulhaber’s theorem on sums of odd powers also holds for an arbitrary arithmetic progression, namely, the odd power sums of any arithmetic progression a+b, a+2b, . . . , a+nb is a polynomial in na+ n(n + 1)b/2. While this assertion can be deduced from the original Fauhalber’s theorem, we give an alternative formula in terms of the Bernoulli polynomials. Moreover, b...
متن کاملSums of Products of Bernoulli Numbers, Including Poly-Bernoulli Numbers
We investigate sums of products of Bernoulli numbers including poly-Bernoulli numbers. A relation among these sums and explicit expressions of sums of two and three products are given. As a corollary, we obtain fractional parts of sums of two and three products for negative indices.
متن کامل